Computing discrete logarithms in real quadratic congruence function fields of large genus

نویسندگان

  • Volker Müller
  • Andreas Stein
  • Christoph Thiel
چکیده

The discrete logarithm problem in various finite abelian groups is the basis for some well known public key cryptosystems. Recently, real quadratic congruence function fields were used to construct a public key distribution system. The security of this public key system is based on the difficulty of a discrete logarithm problem in these fields. In this paper, we present a probabilistic algorithm with subexponential running time that computes such discrete logarithms in real quadratic congruence function fields of sufficiently large genus. This algorithm is a generalization of similar algorithms for real quadratic number fields.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cryptography in Real Quadratic Congruence Function Fields

The Diffie-Hellman key exchange protocol as well as the ElGamal signature scheme are based on exponentiation modulo p for some prime p. Thus the security of these schemes is strongly tied to the difficulty of computing discrete logarithms in the finite field Fp. The Diffie-Hellman protocol has been generalized to other finite groups arising in number theory, and even to the sets of reduced prin...

متن کامل

Equivalences between Elliptic Curves and Real Quadratic Congruence Function Fields

In 1994, the well-known Diie-Hellman key exchange protocol was for the rst time implemented in a non-group based setting. Here, the underlying key space was the set of reduced principal ideals of a real quadratic number eld. This set does not possess a group structure, but instead exhibits a so-called infrastructure. More recently, the scheme was extended to real quadratic congruence function e...

متن کامل

Elliptic Congruence Function Fields

Recently, the well-known Diie-Hellman key exchange protocol was extended to real quadratic congruence function elds in a non-group based setting. Here, the underlying key space was the set of reduced principal ideals. This set does not possess a group structure, but instead exhibits a so-called infrastructure. The techniques are the same as in the protocol based on real quadratic number elds. A...

متن کامل

Catching Kangaroos in Function Fields

1. Introduction In this paper we generalize the parallelized lambda method for computing invariants in real qua-dratic function elds. A basic such invariant is the regulator, which plays an important role in cryptosystems based on real quadratic function elds. For example, in the key-exchange protocol by Scheidler, Stein and Williams SSW96], the regulator provides a measure for the key space; m...

متن کامل

On the cubic sieve method for computing discrete logarithms over prime fields

In this paper, we report efficient implementations of the linear sieve and the cubic sieve methods for computing discrete logarithms over prime fields. We demonstrate through empirical performance measures that for a special class of primes the cubic sieve method runs about two times faster than the linear sieve method even in cases of small prime fields of the size about 150 bits. We also prov...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Comput.

دوره 68  شماره 

صفحات  -

تاریخ انتشار 1999